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Abstract In this paper we propose a periodic impulsive delay two-species
competitive system in which two species have toxic inhibitory effects on each other.
It is assumed that the system is impulsively controlled by means of harvesting and
stocking controls. By using the theory of impulsive differential equation and analysis
techniques, a set of sufficient conditions are derived for the permanence and partial
extinction of the system. It turns out that the impulsive controls play a crucial role in
shaping the above dynamics of the system. Numerical simulations are presented to
substantiate the analytical results.
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1 Introduction

With the rapid development of modern industry and agriculture, a great quantity
of toxic substances enter into ecosystems one after another. These pollutants
seriously threaten the survival of the exposed populations. Therefore, it is impor-
tant to study various ecosystems with the effect of toxins and to find a theoretical
threshold value, which determines permanence or extinction of a population or com-
munity.

In recent years many investigations have been conducted to study the effect of
toxic substances on biological species by using mathematical models (see [1–14]). In
particular, Maynard Smith [3] incorporated the effect of toxic substances in a two-
species Lotka–Volterra competitive system by assuming that each species produces a
substance toxic to the other, but only when the other is present. Mukhopadhyay et al.
[5] suggested that a species needs some time to mature before producing a substance
which is toxic to the other, i.e., the production of a toxic substance by the competing
species is not instantaneous, but occurs after some discrete time lag required for matu-
rity of the species. Furthermore, considering the periodic environmental factor, Song
and Chen [13] investigated the following periodic two-species competitive system
with the effect of toxic substances

x ′(t) = x(t)[K1(t) − α1(t)x(t) − β1(t)y(t) − γ1(t)x(t)y(t − τ1(t))],
y′(t) = y(t)[K2(t) − α2(t)y(t) − β2(t)x(t) − γ2(t)x(t − τ2(t))y(t)]. (1.1)

Here x(t), y(t) stand for the population densities of two competing species; K1(t),
K2(t) are the intrinsic growth rates of two competing species; αi (t)(i = 1, 2) are the
coefficients of intraspecific competition; βi (t)(i = 1, 2) are the coefficients of inter-
specific competition; Ki (t)/αi (t)(i = 1, 2) are the environmental carrying capacities
of two competing species; γ1(t) and γ2(t) are, respectively, the rates of toxic inhibition
of the species x by the species y and vice versa.

In addition, the ecological systems are often deeply perturbed by human activities
such as harvesting and stocking. Usually, these activities are considered continuously
by adding some items in these systems [15,16]. However, it is not always realis-
tic. Mostly, the harvesting or stocking of the species is seasonal or occurs in regular
pulses. These activities may also be periodic naturally, for example, a fisherman may
go fishing at the same time once a day or once a week. It is evident that the spe-
cies population levels repeatedly undergo changes of relatively short duration at fixed
times due to harvesting or stocking. Because the duration of these changes is often
negligible compared to the total duration of the life process, such changes can be
well-approximated as being instantaneous changes of state, or impulses. These sys-
tems tend to be more suitably modeled by impulsive differential equations, which
allow for discontinuities in the evolution of the state. Impulsive differential equations
are found in almost every domain of applied sciences, and numerous examples are
given in Bainov and his collaborators’ books [17,18]. Some impulsive equations have
been recently introduced in population dynamics, such as vaccination [19], population
ecology [20–22], chemotherapeutic treatment of disease [23], the chemostat [24–26],
birth pulses [27–29].
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Considering the possibility of impulsive perturbations, we introduce impulses in
system (1.1) and obtain the following periodic impulsive delay competitive system
with the effect of toxic substances
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′(t) = x(t)[K1(t)− α1(t)x(t)−β1(t)y(t)− γ1(t)x(t)y(t− τ1(t))],
y′(t) = y(t)[K2(t)−α2(t)y(t)−β2(t)x(t)− γ2(t)y(t)x(t− τ2(t))],

}

, t �= tk,

x(t+k ) = x(tk) + p,

y(t+k ) = (1 + bk)y(tk),

}

, t = tk, k ∈ N

(1.2)

with initial condition

(x(s), y(s)) = φ(s) = (φ1(s), φ2(s)), for − τ ≤ s ≤ 0,

φ(0) > 0, φ ∈ PC([−τ, 0], R2+). (1.3)

Here τ = max1≤i≤2 maxt∈[0,ω]{τi (t)}.Ki (t), αi (t), βi (t), γi (t), τi (t) are continuous
ω-periodic functions, and αi (t), βi (t), γi (t) are positive and τi (t)(i = 1, 2) are non-
negative. The intrinsic growth rates Ki (t)(i = 1, 2) are not necessarily positive, since
the environment fluctuates randomly, in weak environment, Ki (t)(i = 1, 2) may be
negative. N is the set of positive integers. The jump conditions reflect the possibility
of impulsive effects on the species x and y. p > 0 is the impulsive stocking amount of
the species x at t = tk , which implies that the populations are subjected to impulsive
stocking at a constant rate p. bk y(tk) < 0 may represent the impulsive harvesting
amount of the species y at t = tk , while bk y(tk) > 0, the perturbations may stand
for the impulsive stocking amount of the species y at t = tk . That is, the impulsive
harvesting amount (or stocking amount) is proportional to the current density of the
species y. As we know, maintaining ecological balance is an important ecological
problem for a population or community. It is quite reasonable to consider the prob-
lem: if we wish to make the population coexist or extinct, how should we control the
harvesting or stocking effort?

Despite the apparent abundance of applications, the study of periodic impulsive
delay equations is in its relative infancy. To our knowledge, few papers have been
published on the permanence and partial extinction of system (1.2). The main pur-
pose of this paper is to derived a set of easily verifiable sufficient conditions for the
permanence and partial extinction of system (1.2). This paper is organized as follows.
In Sect. 2, we give some assumptions, notations and preliminary lemmas which are
used in the later sections. System (1.2) is analyzed to find sufficient conditions for the
permanence and partial extinction of two species in Sect. 3. In the final section, we
conclude our paper and present specific examples and their numerical simulations to
interpret how impulsive harvesting or stocking policy can lead to significant changes
in size of two species.

2 Preliminaries

In this section, we shall introduce some assumptions, notations and state preliminary
lemmas which will be useful for establishing our main results.
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In system (1.2), we will use the following assumptions:

(H1) 0
.= t0 < t1 < t2 < · · · are fixed impulsive points with limk→∞ tk = ∞;

(H2) {bk} is a real sequence and bk > −1, k ∈ N;
(H3) p > 0 and there exists an integer q > 0 such that bk+q = bk, tk+q = tk + ω;
(H4) τi (t) ∈ C([0,∞), [0,∞)) are ω-periodic functions and t − τi (t) → ∞ as

t → ∞, i = 1, 2.

In the following, we introduce some notations and lemmas.
Let J ⊂ R and J = [t0,∞). We introduce the following spaces of functions:
PC(J, R)

.= {u : J → R : is continuous for t ∈ J, t �= tk , and has discontinuities of
the first kind at the points tk ∈ J (k ∈ N) where they are continuous from the left}
and
PC1(J, R)

.= {u ∈ PC(J, R) : u is continuously differential for t ∈ J, t �= tk, u′(t+k )

and u′(t−k ) exist, k ∈ N}.
Lemma 2.1 (Impulsive Differential Inequalities, Theorem 1.4.1 in [18]) If the func-
tion u ∈ PC1([t0,∞), R) satisfies the inequalities

{
u′(t) ≤ p(t)u(t) + f (t), t �= tk, t ≥ t0,
u(t+k ) ≤ dku(tk) + hk, k ∈ N,

(2.1)

where p(t), f (t) ∈ PC([t0,∞), R), dk > 0, hk are constants for k ∈ N. Then for
t ≥ t0

u(t) ≤ u(t0)
∏

t0<tk<t

dk exp

⎛

⎝

t∫

t0

p(s)ds

⎞

⎠ +
∑

t0<tk<t

⎛

⎝
∏

tk<t j <t

d j exp

⎛

⎝

t∫

tk

p(s)ds

⎞

⎠

⎞

⎠ hk

+
t∫

t0

∏

s<tk<t

dk exp

⎛

⎝

t∫

s

p(r)dr

⎞

⎠ f (s)ds.

Analogously, we have

u(t) ≥ u(t0)
∏

t0<tk<t

dk exp

⎛

⎝

t∫

t0

p(s)ds

⎞

⎠ +
∑

t0<tk<t

⎛

⎝
∏

tk<t j <t

d j exp

⎛

⎝

t∫

tk

p(s)ds

⎞

⎠

⎞

⎠ hk

+
t∫

t0

∏

s<tk<t

dk exp

⎛

⎝

t∫

s

p(r)dr

⎞

⎠ f (s)ds.

for t ≥ t0 if all the inequalities of (2.1) are inverse.

Lemma 2.2 (Lemma 2.4 in [30]) Consider the following impulsive system

{
x ′(t) = α(t)x(t), t �= tk,
x(t+k ) = x(tk) + p,

(2.2)
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where α(t) is a continuous ω-periodic function, p is a positive constant and there is
an integer q > 0 such that tk+q = tk + ω. If

∫ ω

0 α(t)dt < 0, then (2.2) has a unique
positive, globally asymptotically stable ω-periodic solution.

Lemma 2.3 (Lemma 2.3 in [21]) Let u(t) be a continuous ω-periodic function. If
ω > 0 and

∫ ω

0 u(t)dt > 0, then the following inequality

exp{c(t − s)} ≤ exp

{

1 + dω +
∫ t

s
u(r)dr

}

, for t ≥ s, t → ∞ (2.3)

holds, where d = maxt∈[0,ω]{|u(t)|} and the constant c satisfies 0 < c ≤ min
{∫ ω

0 u(t)dt/ω, 1/ω}.
Similar to Lemma 2.1 in [31] or Theorem 2.1 in [20], we can obtain Lemma 2.4.

Lemma 2.4 Consider the following impulsive system

{
x ′(t) = x(t)(α(t) − β(t)x(t)), t �= tk,

x(t+k ) = x(tk) + p.
(2.4)

where α(t), β(t) are continuous ω-periodic functions and β(t) > 0, p is a positive
constant and there is an integer q > 0 such that tk+q = tk +ω. If

∫ ω

0 α(t)dt > 0, then
system (2.4) has a unique positive, globally asymptotically stable ω-periodic solution.

Lemma 2.5 (Lemma 2.2 in [30]) Consider the following impulsive system

{
y′(t) = y(t)(α(t) − β(t)y(t)), t �= tk,

y(t+k ) = (1 + bk)y(tk).
(2.5)

where α(t), β(t) are continuous ω-periodic functions and β(t) > 0, and there exists
an integer q > 0 such that bk+q = bk, tk+q = tk + ω and bk > −1 for k ∈ N. Then

(1) any solution y(t) of (2.5) with positive initial value satisfies limt→∞ y(t) = 0 if

q∏

k=1

(1 + bk) exp

⎧
⎨

⎩

ω∫

0

α(t)

⎫
⎬

⎭
< 1; (2.6)

(2) (2.5) has a unique positive ω-periodic solution if and only if

q∏

k=1

(1 + bk) exp

⎧
⎨

⎩

ω∫

0

α(t)

⎫
⎬

⎭
> 1. (2.7)

Moreover, the unique positive ω-periodic solution is globally asymptotically stable.
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3 Permanence and partial extinction

Denote

λ1
.=

q∏

k=1

(1 + bk) exp

⎧
⎨

⎩

ω∫

0

[K2(t) − β2(t)v̄1(t)]dt

⎫
⎬

⎭
,

(3.1)

λ2
.=

q∏

k=1

(1 + bk) exp

⎧
⎨

⎩

ω∫

0

[K2(t) − β2(t)v̄2(t)]dt

⎫
⎬

⎭
,

where v̄1(t) and v̄2(t) are, respectively, the unique positive globally asymptotically
stable ω-periodic solutions of systems

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v′(t) = K1(t)v(t), t �= tk,

v(t+k ) = v(tk) + p,

when
ω∫

0
K1(t)dt < 0

(3.2)

and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v′(t) = v(t)[K1(t) − α1(t)v(t)], t �= tk,

v(t+k ) = v(tk) + p,

when
ω∫

0
K1(t)dt > 0.

(3.3)

If λ1 > 1 and λ2 > 1, then we can choose a constant ε such that

0 < ε < min

{
ln λ1

∫ ω

0 β2(t)dt
,

ln λ2
∫ ω

0 β2(t)dt

}

. (3.4)

Now, we state the theorem for the permanence of two species.

Theorem 3.1 For system (1.2) we have the following conclusions:

(1) the species x is permanent;
(2) when

∫ ω

0 K1(t)dt < 0, if λ1 > 1, then the species y is permanent;
(3) when

∫ ω

0 K1(t)dt > 0, if λ2 > 1, then the species y is permanent.
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Proof (1) We first show that y(t) is uniformly ultimately upper bounded. From (1.2),
we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t) = x(t+k−1) exp

{
t∫

0
[K1(s) − α1(s)x(s) − β1(s)y(s)

−γ1(s)x(s)y(s − τ1(s))]ds

}

,

y(t) = y(t+k−1) exp

{
t∫

0
[K2(s) − α2(s)y(s) − β2(s)x(s)

−γ2(s)y(s)x(s − τ2(s))]ds

}

,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, t ∈ (tk−1, tk].

x(t+k ) = x(tk) + p,

y(t+k ) = (1 + bk)y(tk),

}

, t = tk .

It is easy to prove that x(t) > 0, y(t) > 0 if x(0) > 0, y(0) > 0. So we get

{
y′(t) ≤ K2(t)y(t), t �= tk,

y(t+k ) = (1 + bk)y(tk)
(3.5)

and

{
y′(t) ≤ y(t)[K2(t) − α2(t)y(t)], t �= tk,

y(t+k ) = (1 + bk)y(tk).
(3.6)

To obtain the uniformly ultimately upper bound of y(t), we consider Cases (A1) and
(A2).

Case (A1)
∏q

k=1(1 + bk) exp{∫ ω

0 K2(t)dt} ≤ 1.
From Lemma 2.1 and (3.5), it follows that

y(t) ≤ y(0)
∏

0<tk<t

(1 + bk) exp

(∫ t

0
K2(s)ds

)

. (3.7)

When t ∈ (nω, (n + 1)ω], n ∈ N ∪ {0}, let

B = max
s∈[0,ω]

∏

0≤tk<s

(1 + bk), K = max
t∈[nω,(n+1)ω] exp

(∫ t

nω

K2(s)ds

)

.
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From (3.7), we get

y(t) ≤ y(0)
∏

0<tk<nω

(1 + bk)
∏

nω≤tk<t

(1 + bk) exp

⎛

⎝

t∫

0

K2(s)ds

⎞

⎠

= y(0)

⎛

⎝
∏

0<tk<ω

(1 + bk) exp

⎛

⎝

ω∫

0

K2(s)ds

⎞

⎠

⎞

⎠

n

∏

0<tk<t−nω

(1 + bk) exp

⎛

⎝

t∫

nω

K2(s)ds

⎞

⎠

= y(0)

⎛

⎝
q∏

k=1

(1 + bk) exp

⎛

⎝

ω∫

0

K2(s)ds

⎞

⎠

⎞

⎠

n

BK .

If
∏q

k=1(1+bk) exp
(∫ ω

0 K2(s)ds
) = 1, then we have y(t) ≤ y(0)BK . If

∏q
k=1(1+

bk) exp(
∫ ω

0 K2(s)ds) < 1, then we have

lim
n→∞ y(0)

⎛

⎝
q∏

i=1

(1 + bk) exp

⎛

⎝

ω∫

0

K2(s)ds

⎞

⎠

⎞

⎠

n

BK = 0. (3.8)

Hence limt→∞ y(t) = 0, which implies that there exist a1 > 0 and T1 > 0 such that

y(t) ≤ a1, for t ≥ T1. (3.9)

Case (A2)
∏q

k=1(1 + bk) exp{∫ ω

0 K2(t)} > 1.
Consider the comparison system of (3.6)

{
u′(t) = u(t)[K2(t) − α2(t)u(t)], t �= tk,

u(t+k ) = (1 + bk)u(tk).
(3.10)

From (2) in Lemma 2.5, it follows that (3.10) has a unique positive, globally asymp-
totically stable ω-periodic solution denoted by ū1(t). The global attractivity of ū1(t)
implies that there exist T2 > 0 and a2 > 0 such that

u(t) ≤ ū1(t) + a2, for t ≥ T2. (3.11)

Let u(t) be any solution of (3.10) with u(0) = y(0) > 0. From (3.6) and (3.10), we
use the comparison theorem of impulsive differential equation, and then obtain that
y(t) ≤ u(t) for t ≥ 0. From this and (3.11) one has

y(t) ≤ ū1(t) + a2, for t ≥ T2. (3.12)
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It follows from Cases (A1) and (A2) that there exist T3 = max{T1, T2} > 0 and
My = maxt∈[0,ω]{y(0)BK , a1, ū1(t) + a2} > 0 such that

y(t) ≤ My, for t ≥ T3. (3.13)

Next, we show that x(t) is uniformly ultimately upper bounded. Similar to (3.5) and
(3.6), from (1.2) we have

{
x ′(t) ≤ K1(t)x(t), t �= tk,

x(t+k ) = x(tk) + p,
(3.14)

and

{
x ′(t) ≤ x(t)[K1(t) − α1(t)x(t)], t �= tk,

x(t+k ) = x(tk) + p.
(3.15)

To obtain the uniformly ultimately upper bound of x(t), we consider Cases (B1) and
(B2).

Case (B1)
∫ ω

0 K1(t)dt < 0.
From Lemma 2.2, it follows that the comparison system of (3.14)

{
v′(t) = K1(t)v(t), t �= tk,

v(t+k ) = v(tk) + p
(3.16)

has a unique positive, globally asymptotically stable ω-periodic solution denoted by
v̄1(t). The global attractivity of v̄1(t) implies that there exist ε > 0 and T4 > 0 such
that

v(t) ≤ v̄1(t) + ε, for t ≥ T4,

where the constant ε satisfies (3.4). From this, (3.14) and (3.16), we have

x(t) ≤ v̄1(t) + ε, for t ≥ T4. (3.17)

Case (B2)
∫ ω

0 K1(t)dt ≥ 0.
We can choose a constant δ > 0 such that

∫ ω

0 (K1(t) + δ)dt > 0. By Lemma 2.4, we
obtain that the comparison system of (3.15)

{
v′(t) = v(t)[K1(t) + δ − α1(t)v(t)], t �= tk,

v(t+k ) = v(tk) + p
(3.18)

has a unique positive, globally asymptotically stable ω-periodic solution denoted by
v̄2(t). Similar to Case (B1), we can easily obtain that there exist ε > 0 and T5 > 0
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such that

x(t) ≤ v̄2(t) + ε, for t ≥ T5, (3.19)

where the constant ε satisfies (3.4). Let Mx = maxt∈[0,ω]{v̄1(t) + ε, v̄2(t) + ε} and
T6 = max{T4, T5}. Then from Cases (B1) and (B2) we have

x(t) ≤ Mx , for t ≥ T6. (3.20)

Finally, we prove that x(t) is uniformly ultimately lower bounded. From (3.13) and
(3.20) we have

x(t) ≤ Mx , y(t) ≤ My, for t > T7 = max{T3, T6}. (3.21)

So from (1.2) and (3.21) there exists T8
.= T7 + τ such that for t ≥ T8

⎧
⎪⎨

⎪⎩

x ′(t) ≥ x(t)(K1(t) − α1(t)Mx − β1(t)My − γ1(t)Mx My)

≥ x(t)(K1(t) − M1 − α1(t)Mx − β1(t)My − γ1(t)Mx My), t �= tk,

x(t+k ) = x(tk) + p,

(3.22)

where the constant M1 > 0 satisfies

ω∫

0

(K1(t) − M1 − α1(t)Mx − β1(t)My − γ1(t)Mx My)dt < 0.

It follows from Lemma 2.2 that the comparison system

{
v′(t) = v(t)(K1(t) − M1 − α1(t)Mx − β1(t)My − γ1(t)Mx My), t �= tk,

v(t+k ) = v(tk) + p

(3.23)

has a unique positive, globally asymptotically stable ω-periodic solution denoted by
v̄3(t). The global attractivity of v̄3(t) implies that there exist ε1 > 0 and T9 > T8 such
that

v(t) ≥ v̄3(t) − ε1, for t ≥ T9, (3.24)

where ε1 < mint∈[0,ω] 1
2 v̄3(t). We denote the solution of (3.23) satisfying v(T8) =

x(T8) by v(t). By the comparison theorem of impulsive differential equation and
(3.22)–(3.24), we have

x(t) ≥ v̄3(t) − ε1 ≥ min
t∈[0,ω]{v̄3(t)} − ε1

.= mx , for t ≥ T9. (3.25)
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It follows from (3.20) and (3.25) that the species x is permanent.
(2) From (3.13), it is easy to see that y(t) is uniformly ultimately upper bounded.

Next, we show that y(t) is uniformly ultimately lower bounded.
When

∫ ω

0 K1(t)dt < 0, for t ≥ T4 + τ , it follows from (1.2) and (3.17) that

{
y′(t) ≥ y(t)[K2(t)−β2(t)(v̄1(t)+ε)−(α2(t)+γ2(t)(v̄1(t)+ε))y(t)], t �= tk,

y(t+k ) = (1+bk)y(tk).
(3.26)

Consider the comparison system of (3.26)

{
u′(t) = u(t)[K2(t)−β2(t)(v̄1(t)+ε)−(α2(t)+γ2(t)(v̄1+ε))y(t)], t �= tk,

u(t+k ) = (1+bk)u(tk).
(3.27)

Note that the choice of ε (see 3.4), it is easy to verify that
∏q

k=1(1+bk) exp{∫ ω

0 (K2(t)−
β2(t)(v̄1(t) + ε))dt} > 1, then it follows from Lemma 2.5 that (3.27) has a unique
positive, globally asymptotically stable ω-periodic solution denoted by ū2(t). Similar
to (3.24)–(3.25), we obtain that there exist ε2 > 0 and T10 ≥ T4 + τ such that

y(t) ≥ ū2(t) − ε2 ≥ min
t∈[0,ω]{ū2(t)} − ε2

.= my, for t ≥ T10, (3.28)

where ε2 < min[0,ω] 1
2 ū2(t). It follows from (3.13) and (3.28) that the species y is

permanent.
(3) When

∫ ω

0 K1(t)dt ≥ 0, the proof is similar to that of the case (2), and the details
are omitted. The proof of Theorem 3.1 is complete. 
�

In the following, we present the theorem for the permanence of the species x and
the extinction of the species y.

Theorem 3.2 If

q∏

k=1

(1 + bk) exp

(∫ ω

0
K2(s)ds

)

≤ 1, (3.29)

then any positive solution (x(t), y(t)) of (1.2) satisfies

lim
t→∞ |x(t) − χ̄ (t)| = 0, lim

t→∞ y(t) = 0,

where χ̄ (t) is a unique positive ω-periodic solution of the impulsive logistic system

{
χ ′(t) = χ(t)(K1(t) − α1(t)χ(t)), t �= tk,

χ(t+k ) = χ(tk) + p.
(3.30)
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Proof We first consider the global attractivity of y(t). From (1) in Theorem 3.1 we
know that x is permanent. In particular, from (3.20) and (3.25) we have

mx ≤ x(t) ≤ Mx , t ≥ T9. (3.31)

From (1.2), there exists t∗
.= T9 + τ such that for t ≥ t∗

y′(t) ≤ y(t)[K2(t) − β2(t)mx − (α2(t) + γ2(t)mx )y(t)]. (3.32)

From (3.29) we obtain that
∏q

k=1(1 + bk) exp(
∫ ω

0 (K2(s)−β2(s)mx )ds < 1. So from
Lemma 2.5 we have that any positive solution of the comparison system

{
u′(t) = u(t)[K2(t) − β2(t)mx − (α2(t) + γ2(t)mx )y(t)], t �= tk,

u(t+k ) = (1 + bk)u(tk)
(3.33)

satisfies limt→∞ u(t) = 0. By the comparison theorem of impulsive differential equa-
tion, we obtain that limt→∞ y(t) = 0.

In the following, we investigate the global attractivity of x(t). We consider two
cases.

Case (1)
∫ ω

0 K1(s)ds ≤ 0.
Since K1(t) is a continuous ω-periodic function with

∫ ω

0 K1(s)ds ≤ 0, there exists a
constant δ > 0 such that

t∫

s

K1(r)dr ≤ δ, for t ≥ s, t → ∞. (3.34)

Let z(t) = x(t) − χ̄(t), then

⎧
⎪⎨

⎪⎩

z′(t) = z(t)[K1(t) − α1(t)(x(t) + χ̄ (t))

−β1(t)y(t) − γ1(t)x(t)y(t − τ1(t))], t �= tk,

z(t+k ) = x(tk) + p − (χ̄(tk) + p) = x(tk) − χ̄(tk) = z(tk).

(3.35)

For t ≥ t∗, we have

z(t) = z(t∗) exp

⎛

⎝

t∫

t∗

(K1(s) − α1(s)(x(s) + χ̄ (s)))ds

⎞

⎠

−
t∫

t∗

[β1(s)y(s) + γ1(s)x(s)y(t − τ1(s))]

exp

⎛

⎝

t∫

s

(K1(r) − α1(r)(x(r) + χ̄ (r)))dr

⎞

⎠ ds.
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Furthermore, one obtains that for t → ∞,

|z(t)| ≤ |z(t∗)| exp

⎛

⎝

t∫

t∗

K1(s)ds

⎞

⎠ exp

⎛

⎝

t∫

t∗

(−mxα1(s))ds

⎞

⎠

+
t∫

t∗

[βU
1 y(s) + γ U

1 Mx y(s − τ1(s))] exp

⎛

⎝

t∫

s

K1(r)dr

⎞

⎠

× exp

⎛

⎝

t∫

s

(−mxα1(r))dr

⎞

⎠ ds

≤ |z(t∗)| exp{1 + δ + d1ω − c1(t − t∗)}

+ exp{1 + δ + d1ω}
t∫

t∗

[βU
1 y(s) + γ U

1 Mx y(s − τ1(s))] exp{c1(s − t)}ds,

(3.36)

where βU
1 = maxt∈[0,ω] β1(t), γ U

1 = maxt∈[0,ω] γ1(t), 0 < c1 < min{∫ ω

0 mxα1(t)
dt/ω, 1/ω} and d1 = maxt∈[0,ω]{mxα1(t)}. Since limt→∞ y(t) = 0, it follows from
the assumption (H4) that we have limt→∞ y(t − τ1(t)) = 0. A simple calculation
shows that

lim
t→∞

t∫

t∗

y(s) exp{c1(s − t)}ds = 0,

(3.37)

lim
t→∞

t∫

t∗

y(s − τ1(s)) exp{c1(s − t)}ds = 0.

Thus we obtain that limt→∞
∫ t

t∗ [βU
1 y(s)+γ U

1 Mx y(s − τ1(s))] exp{c1(s − t)}ds = 0.
It follows from (3.36) to (3.38) that limt→∞ |z(t)| = 0, that is,

lim
t→∞ |x(t) − χ̄ (t)| = 0. (3.38)

Case (2)
∫ ω

0 K1(s)ds > 0.
Making the change of variable z(t) = x−1(t) − χ̄−1(t), one has

{
z′(t) = −K1(t)z(t) + β1(t)y(t)

x(t) + γ1(t)y(t − τ1(t)), t �= tk,

z(t+k ) = (x(tk) + p)−1 − (χ̄(tk) + p)−1 = (1 + p�k)
−2z(tk)

.= σk z(tk),
(3.39)

where �k is between x−1(tk) and χ̄−1(tk) and σk = (1 + p�k)
−2.

For the time point t∗, we need to consider two cases: (1) t∗ is not an impulsive point;
(2) t∗ is an impulsive point.
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When t∗ is not an impulsive point, from (3.39) we have

z(t) = z(t∗)
∏

t∗<tk<t

σk exp

⎛

⎝−
t∫

t∗

K1(s)ds

⎞

⎠ +
t∫

t∗

⎧
⎨

⎩

∏

s<tk<t

σk exp

⎛

⎝−
t∫

s

K1(r)dr

⎞

⎠

×
[
β1(s)y(s)

x(s)
+ γ1(s)y(s − τ1(s))

]}

ds. (3.40)

Using 0 < σk < 1 and Lemma 2.3, we obtain that for t → ∞,

|z(t)| ≤ |z(t∗)| exp

⎛

⎝−
t∫

t∗

K1(s)ds

⎞

⎠ +
t∫

t∗

exp

(

−
∫ t

s
K1(r)dr

)[
β1(s)y(s)

x(s)

+γ1(s)y(s − τ1(s))

]

ds

≤ |z(t∗)| exp{1 + d2ω − c2(t − t∗)}

+ exp{1 + d2ω}
∫ t

t∗

[
βU

1 y(s)

mx
+ γ U

1 y(s − τ1(s))

]

exp{c2(s − t)}ds,

(3.41)

where 0 < c2 < min{∫ ω

0 K1(t)dt/ω, 1/ω} and d2 = maxt∈[0,ω]{|K1(t)|}. Similar to
(3.36)–(3.38), we obtain that limt→∞ z(t) = 0. Using the mean value theorem, we
obtain that limt→∞ |x(t) − χ̄(t)| = 0.

When t∗ is an impulsive point, from (3.39) we have

z(t) = z(t+∗ )

⎛

⎝
∏

t+∗ <tk<t

σk

⎞

⎠ exp

⎛

⎜
⎝−

t∫

t+∗

K1(s)ds

⎞

⎟
⎠

+
t∫

t+∗

⎧
⎨

⎩

∏

s<tk<t

σk exp

⎛

⎝−
t∫

s

K1(r)dr

⎞

⎠

×
[
β1(s)y(s)

x(s)
+ γ1(s)y(s − τ1(s))

]
⎫
⎪⎬

⎪⎭
ds. (3.42)

Similar to (3.40) and (3.41), one can easily show that limt→∞ |x(t)− χ̄ (t)| = 0. This
completes the proof. 
�
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Fig. 1 Asymptotic behaviors of system (4.1) with K1(t) = 1.1 + sin 2π t, K2(t) = 2 + cos 2π t, p ≡
0, bk ≡ 0. a Time-series of the species x . b Time-series of the species y

4 Numerical analysis and discussion

In this paper, we have investigated the dynamic behaviors of a periodic impulsive delay
two-species competitive system with the effect of toxic substances. Each species is not
isolated from its living environment, but competes with the other for the same resource.
Moreover, it is affected by the human activities. So the model discussed in this paper
is more realistic due to taking the discontinuity of human activities into account. Suffi-
cient conditions for the permanence and partial extinction are established, respectively.
The above results show that the impulsive controls play an important role while both
permanence and partial extinction are independent of the values of delays and the toxic
inhibition rates. These theoretical results are confirmed by the following examples and
their numerical results.

As mentioned in the Introduction, system (1.2) can describe two competing species
which are harvested or stocked seasonally. In fact, we can only take a finite number of
harvests or stocks in a period (e.g., in one year). For simplicity, assume we harvest or
stock once during a period. Now we consider the following impulsive delay systems
and try to explain how the impulsive harvesting or stocking affects the two species’
survivals. Consider

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ′(t) = x(t)[K1(t) − (1.1 + sin 2π t)x(t) − (1.15 + sin 2π t)y(t)

−(1.2 + cos 2π t)x(t)y(t − 2)],
y′(t) = y(t)[K2(t) − (1.2 + cos 2π t)y(t) − (1.1 + sin 2π t)x(t)

−(1.25 + sin 2π t)y(t)x(t − 1)],

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, t �= tk,

x(t+k ) = x(tk) + p,

y(t+k ) = (1 + bk)y(tk),

}

, t = tk

(4.1)

with initial condition
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Fig. 2 Asymptotic behaviors of systems (4.1) and (3.3) with K1(t) = 1.1 + sin 2π t, K2(t) = 2 +
cos 2π t, p ≡ 0.1, bk ≡ −0.1. a Time-series of the species v. b Time-series of the species x . c Time-series
of the species y

φ1(t) =
{

0, t ∈ [−2, 0),

0.1, t = 0
and φ2(t) =

{
0, t ∈ [−2, 0),

0.2, t = 0.
(4.2)

We fix the coefficients that α1(t) = 1.1 + sin 2π t, β1(t) = 1.15 + sin 2π t, γ1(t) =
1.2 + cos 2π t, α2(t) = 1.2 + cos 2π t, β2(t) = 1.1 + sin 2π t, γ2(t) = 1.25 +
sin 2π t, τ1(t) = 2, τ2(t) = 1, ω = 1, q = 1, tk = k ∈ N. When K1(t) =
1.1 + sin 2π t, K2(t) = 2 + cos 2π t , the system (4.1) without impulsive effect (p ≡
0, bk ≡ 0) has an asymptotically stable semi-trivial solution (see Fig. 1, here the spe-
cies x is the inferior competitor). If we choose p ≡ 0.1, bk ≡ −0.1, then system
(3.3) has a unique positive globally asymptotically stable 1-periodic solution denoted
by v̄2(t) (see Fig. 2a, here v̄2(t) < 1.2), and the assumptions of (1) and (3) in The-
orem 3.1 (λ2 > 1) are satisfied, and from Fig. 2b and c we may observe that two
species are permanent. So in this case the principle of competitive exclusion is invalid
and the impulsive control strategy protects the inferior competitor x from extinction.
In fact, since the species x is the inferior competitor without impulsive stocking, the
competition ability of x increases as p increases if bk is relatively small, and a state
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Fig. 3 Asymptotic behaviors of systems (4.1) and (3.2) with K1(t) = −0.2 + 0.1 sin 2π t, K2(t) =
0.15 + 0.1 cos 2π t, p ≡ 0.1, bk ≡ 0.6. a Time-series of the species v. b Time-series of the species x .
c Time-series of the species y

of coexistence occurs, which is in line with reality from a biological point of view.
When K1(t) = −0.2 + 0.1 sin 2π t (that is, the species x lives in a weak environ-
ment) and p ≡ 0.1, system (3.2) has a unique positive globally asymptotically stable
1-periodic solution denoted by v̄1(t) (see Fig. 3a, here v̄1(t) < 0.55). Furthermore,
when K2(t) = 0.15+0.1 cos 2π t and bk ≡ 0.6, it is easy to verify that the assumptions
of (1) and (2) in Theorem 3.1 (λ1 > 1) are satisfied, so both x and y are permanent
(see Fig. 3b, c). The result shows that the impulsive control strategy can save the
species x from extinction although the species lives in a weak environment. When
K1(t) = 0.08 + 0.1 sin 2π t, K2(t) = 0.15 + 0.1 cos 2π t, p ≡ 0.5, and bk ≡ −0.2,
we can verify that the conditions of Theorem 3.2 are satisfied. Then the species x will
be driven to stabilize at a positive periodic solution of an impulsive logistic system
while the species y tend toward extinction in the end. (see Fig. 4a–c). This result shows
that the human activities result in the extinction of the species y, and hence it is very
important to plan a suitable harvesting or stocking policy in order to make both species
coexist.
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Fig. 4 Asymptotic behaviors of systems (4.1) and (3.30) with K1(t) = 0.08 + 0.1 sin 2π t, K2(t) =
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